Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 14(1): 9151, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644368

RESUMO

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , África Austral , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , África Oriental , Genótipo , Cruzamentos Genéticos , Endogamia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Heliyon ; 9(5): e15513, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37144203

RESUMO

Less attention had been given to the performances of three-way crosses and its comparative advantages of these hybrids over single crosses. This study was carried out to evaluate the performances of three-way crosses in comparison to single crosses for yield and related agronomic traits and to estimate the magnitude of heterosis. The trial was laid out in a simple alpha lattice design of 10 × 6 for lines, 6 × 5 for single crosses (SC), and 9 × 5 for three way-crosses and planted in adjacent plots in the 2019 cropping season in three locations namely Ambo, Abala-Farcha and Melkassa. Single cross hybrids showed a highly significant (P<1%) variation for grain yield, plant height, ear height, and ear length at three locations. These single cross hybrids had showed also a highly significant genotype by environment interaction (P < 1%) for grain yield, plant height, ear height and kernel per ear. Regarding three-way crosses, there was a significant variation (P<5%) on grain yield in Ambo and Melkassa but on ear height and rows per ear in Abala-Faracho. The genotype × environment interaction was significantly varied for grain yield, ear height and ear length. In the comparison, 80% crosses in Ambo, 73% in Abala-Faracho and 67% in Melkassa showed that three-way crosses were better in their performance than that of their respective single crosses. On the other hand, the single crosses that out-performed their respective three-way crosses were higher in Melkassa than Abala-Faracho and the least were reported from Ambo. Similarly, the maximum better and mid-parent heterosis was from single cross 1(769%) in Ambo and single cross 7 (104%) in Melkassa whereas TWC 14 (52%) and TWC 24 (78%) were the highest better and mid-parent heterosis, respectively in Ambo, TWC1 (56%), and TWC30 (25%) were the highest BPH, and MPH, respectively in Melkassa.

3.
Front Plant Sci ; 14: 1321308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293626

RESUMO

Genetic gain estimation in a breeding program provides an opportunity to monitor breeding efficiency and genetic progress over a specific period. The present study was conducted to (i) assess the genetic gains in grain yield of the early maturing maize hybrids developed by the International Maize and Wheat Improvement Center (CIMMYT) Southern African breeding program during the period 2000-2018 and (ii) identify key agronomic traits contributing to the yield gains under various management conditions. Seventy-two early maturing hybrids developed by CIMMYT and three commercial checks were assessed under stress and non-stress conditions across 68 environments in seven eastern and southern African countries through the regional on-station trials. Genetic gain was estimated as the slope of the regression of grain yield and other traits against the year of first testing of the hybrid in the regional trial. The results showed highly significant (p< 0.01) annual grain yield gains of 118, 63, 46, and 61 kg ha-1 year-1 under optimum, low N, managed drought, and random stress conditions, respectively. The gains in grain yield realized in this study under both stress and non-stress conditions were associated with improvements in certain agronomic traits and resistance to major maize diseases. The findings of this study clearly demonstrate the significant progress made in developing productive and multiple stress-tolerant maize hybrids together with other desirable agronomic attributes in CIMMYT's hybrid breeding program.

4.
Sci Rep ; 12(1): 20110, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418412

RESUMO

Fostering a culture of continuous improvement through regular monitoring of genetic trends in breeding pipelines is essential to improve efficiency and increase accountability. This is the first global study to estimate genetic trends across the International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding pipelines in eastern and southern Africa (ESA), South Asia, and Latin America over the past decade. Data from a total of 4152 advanced breeding trials and 34,813 entries, conducted at 1331 locations in 28 countries globally, were used for this study. Genetic trends for grain yield reached up to 138 kg ha-1 yr-1 in ESA, 118 kg ha-1 yr-1 South Asia and 143 kg ha-1 yr-1 in Latin America. Genetic trend was, in part, related to the extent of deployment of new breeding tools in each pipeline, strength of an extensive phenotyping network, and funding stability. Over the past decade, CIMMYT's breeding pipelines have significantly evolved, incorporating new tools/technologies to increase selection accuracy and intensity, while reducing cycle time. The first pipeline, Eastern Africa Product Profile 1a (EA-PP1a), to implement marker-assisted forward-breeding for resistance to key diseases, coupled with rapid-cycle genomic selection for drought, recorded a genetic trend of 2.46% per year highlighting the potential for deploying new tools/technologies to increase genetic gain.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Triticum , Secas , Grão Comestível/genética
5.
Genes (Basel) ; 13(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35205395

RESUMO

Breeding maize lines with the improved level of desired agronomic traits under optimum and drought conditions as well as increased levels of resistance to several diseases such as maize lethal necrosis (MLN) is one of the most sustainable approaches for the sub-Saharan African region. In this study, 879 doubled haploid (DH) lines derived from 26 biparental populations were evaluated under artificial inoculation of MLN, as well as under well-watered (WW) and water-stressed (WS) conditions for grain yield and other agronomic traits. All DH lines were used for analyses of genotypic variability, association studies, and genomic predictions for the grain yield and other yield-related traits. Genome-wide association study (GWAS) using a mixed linear FarmCPU model identified SNPs associated with the studied traits i.e., about seven and eight SNPs for the grain yield; 16 and 12 for anthesis date; seven and eight for anthesis silking interval; 14 and 5 for both ear and plant height; and 15 and 5 for moisture under both WW and WS environments, respectively. Similarly, about 13 and 11 SNPs associated with gray leaf spot and turcicum leaf blight were identified. Eleven SNPs associated with senescence under WS management that had depicted drought-stress-tolerant QTLs were identified. Under MLN artificial inoculation, a total of 12 and 10 SNPs associated with MLN disease severity and AUDPC traits, respectively, were identified. Genomic prediction under WW, WS, and MLN disease artificial inoculation revealed moderate-to-high prediction accuracy. The findings of this study provide useful information on understanding the genetic basis for the MLN resistance, grain yield, and other agronomic traits under MLN artificial inoculation, WW, and WS conditions. Therefore, the obtained information can be used for further validation and developing functional molecular markers for marker-assisted selection and for implementing genomic prediction to develop superior elite lines.


Assuntos
Resistência à Doença , Estudo de Associação Genômica Ampla , Resistência à Doença/genética , Grão Comestível/genética , Haploidia , Fenótipo , Melhoramento Vegetal , Zea mays/genética
6.
Sci Rep ; 9(1): 13490, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530852

RESUMO

Little is known on maize germplasm adapted to the African highland agro-ecologies. In this study, we analyzed high-density genotyping by sequencing (GBS) data of 298 African highland adapted maize inbred lines to (i) assess the extent of genetic purity, genetic relatedness, and population structure, and (ii) identify genomic regions that have undergone selection (selective sweeps) in response to adaptation to highland environments. Nearly 91% of the pairs of inbred lines differed by 30-36% of the scored alleles, but only 32% of the pairs of the inbred lines had relative kinship coefficient <0.050, which suggests the presence of substantial redundancy in allelic composition that may be due to repeated use of fewer genetic backgrounds (source germplasm) during line development. Results from different genetic relatedness and population structure analyses revealed three different groups, which generally agrees with pedigree information and breeding history, but less so by heterotic groups and endosperm modification. We identified 944 single nucleotide polymorphic (SNP) markers that fell within 22 selective sweeps that harbored 265 protein-coding candidate genes of which some of the candidate genes had known functions. Details of the candidate genes with known functions and differences in nucleotide diversity among groups predicted based on multivariate methods have been discussed.


Assuntos
Variação Genética , Endogamia , Melhoramento Vegetal , Zea mays/genética , Mapeamento Cromossômico , Evolução Molecular , Marcadores Genéticos , Genótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Estresse Fisiológico
7.
PLoS One ; 12(11): e0188696, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190792

RESUMO

White lupin is one of the four economically important species of the Lupinus genus and is an important grain legume in the Ethiopian farming system. However, there has been limited research effort to characterize the Ethiopian white lupin landraces. Fifteen polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 212 Ethiopian white lupin (Lupinus albus) landraces and two genotypes from different species (Lupinus angustifolius and Lupinus mutabilis) were used as out-group. The SSR markers revealed 108 different alleles, 98 of them from 212 landraces and 10 from out-group genotypes, with an average of 6.5 alleles per locus. The average gene diversity was 0.31. Twenty eight landraces harbored one or more private alleles from the total of 28 private alleles identified in the 212 white lupin accessions. Seventy-seven rare alleles with a frequency of less than 5% were identified and accounted for 78.6% of the total alleles detected. Analysis of molecular variance (AMOVA) showed that 92% of allelic diversity was attributed to individual accessions within populations while only 8% was distributed among populations. At 70% similarity level, the UPGMA dendrogram resulted in the formation of 13 clusters comprised of 2 to 136 landraces, with the out-group genotypes and five landraces remaining distinct and ungrouped. Population differentiation and genetic distance were relatively high between Gondar and Ethiopian white lupin populations collected by Australians. A model-based population structure analysis divided the white lupin landraces into two populations. All Ethiopian white lupin landrace populations, except most of the landraces collected by Australians (77%) and about 44% from Awi, were grouped together with significant admixtures. The study also suggested that 34 accessions, as core collections, were sufficient to retain 100% of SSR diversity. These accessions (core G-34) represent 16% of the whole 212 Ethiopian white lupin accessions and populations from West Gojam, Awi and Australian collections contributed more accessions to the core collection.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Lupinus/genética , Etiópia , Genes de Plantas , Reação em Cadeia da Polimerase
8.
BMC Genomics ; 18(1): 777, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025420

RESUMO

BACKGROUND: Molecular characterization is important for efficient utilization of germplasm and development of improved varieties. In the present study, we investigated the genetic purity, relatedness and population structure of 265 maize inbred lines from the Ethiopian Institute of Agricultural Research (EIAR), the International Maize and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical Agriculture (IITA) using 220,878 single nucleotide polymorphic (SNP) markers obtained using genotyping by sequencing (GBS). RESULTS: Only 22% of the inbred lines were considered pure with <5% heterogeneity, while the remaining 78% of the inbred lines had a heterogeneity ranging from 5.1 to 31.5%. Pairwise genetic distances among the 265 inbred lines varied from 0.011 to 0.345, with 89% of the pairs falling between 0.301 and 0.345. Only <1% of the pairs had a genetic distance lower than 0.200, which included 14 pairs of sister lines that were nearly identical. Relative kinship analysis showed that the kinship coefficients for 59% of the pairs of lines was close to zero, which agrees with the genetic distance estimates. Principal coordinate analysis, discriminant analysis of principal components (DAPC) and the model-based population structure analysis consistently suggested the presence of three groups, which generally agreed with pedigree information (genetic background). Although not distinct enough, the SNP markers showed some level of separation between the two CIMMYT heterotic groups A and B established based on pedigree and combining ability information. CONCLUSIONS: The high level of heterogeneity detected in most of the inbred lines suggested the requirement for purification or further inbreeding except those deliberately maintained at early inbreeding level. The genetic distance and relative kinship analysis clearly indicated the uniqueness of most of the inbred lines in the maize germplasm available for breeders in the mid-altitude maize breeding program of Ethiopia. Results from the present study facilitate the maize breeding work in Ethiopia and germplasm exchange among breeding programs in Africa. We suggest the incorporation of high density molecular marker information in future heterotic group assignments.


Assuntos
Adaptação Fisiológica/genética , Altitude , Umidade , Endogamia , Polimorfismo de Nucleotídeo Único , Zea mays/genética , Zea mays/fisiologia , Marcadores Genéticos/genética , Genótipo , Técnicas de Genotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA